Solar Light Harvesting by Energy Transfer: Learning from Nature

Espen Sagvolden¹, Filipp Furche¹, Eric Schow², Eduardo Jardón-Valadez³, Douglas J. Tobias¹, Jason Stango³,⁵, Hartmut Luecke³,⁴,⁵, Janos K. Lanyi⁴,⁵, Sergei P. Balashov⁴

Departments of ¹Chemistry, ²Physics and Astronomy, ³Molecular Biology and Biochemistry, ⁴Physiology and Biophysics, ⁵Center for Biomembrane Systems and ⁶Institute for Genomics and Bioinformatics, University of California, Irvine, CA 92697

Introduction
- Solar light harvesting is key to solving tomorrow's energy problems
- Excitation energy transfer underlies most light harvesting applications

Project goal: Understand how nature optimizes excitation energy transfer rate

Light-harvesting antenna complex LHZ²: Too complicated!

Xanthorhodopsin in bacterium S. ruber:

UC Irvine is the world's leading university in xanthorhodopsin research
- Spectroscopically well-characterized²,⁴
- X-ray structure has been determined²
- Single antenna (salinixinanthin(SXN)) and single reaction center (retin(LYR))
- Amenable to electronic structure methods and x-ray diffraction

Methods
- Multi-pronged approach:
 1. State-of-the-art quantum mechanical computations of the chromophores using TURBOMOLE
 2. Molecular dynamics simulations of 20ns of movement of the entire protein
 3. Comparison to and validation of x-ray structures
 4. Absorption, fluorescence steady state, and femtosecond spectroscopy

Results

Salinixinanthin:
Relevant excitation: First $\pi \rightarrow \pi^*$ transition

- Validation on beta-carotene: Must blue shift computed salinixinanthin spectra 50nm.
- Oscillator strengths: 2-3 times larger than experiment (within experimental uncertainty).

Retinal:
Relevant excitation: First $\pi \rightarrow \pi^*$ transition

Vertical excitation wavelengths of salinixinanthin (shifted as indicated by beta-carotene computations) and retinal (nm)

<table>
<thead>
<tr>
<th></th>
<th>SXN</th>
<th>LYR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best TDDFT</td>
<td>494</td>
<td>490</td>
</tr>
<tr>
<td>Best RI-CC2</td>
<td>565*</td>
<td>526</td>
</tr>
<tr>
<td>Exp.</td>
<td>565</td>
<td>521</td>
</tr>
</tbody>
</table>

*Gas phase

Effect of the environment on energy (shift in nm relative to gas phase):

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>PC</th>
<th>PCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SXN</td>
<td>+4</td>
<td>+4</td>
<td>+4</td>
</tr>
<tr>
<td>LYR</td>
<td>-62</td>
<td>-62</td>
<td>-89</td>
</tr>
</tbody>
</table>

Interactions included: P=protein, C=other chromophore, L=lipid

Conclusions and Outlook
- Nature uses protein environment to fine-tune chromophore properties
- Importance of interactions: Steric(chromophore structure) > electrostatics with protein > other
- Protonation state: His¹H Asp
- After calibration of energy levels, our method will allow us to model the rate of excitation energy transfer
- Future work: Excited state deactivation vs. energy transfer

References
4 T. Polivka et al., Biophys. J. 96, 2268-77 (2009)